Service-based Integration of Human Users in Workflow-driven Scientific Workflows

David Schumm, Dimitrios Dentsas, Mirko Sonntag, Lina Sun, Karolina Vukojevic and Dimka Karastoyanov

Institute of Architecture of Application Systems

SimTech Cluster of Excellence

http://www.simtech.uni-stuttgart.de/
The Topics for Today

- The Context:
 - Simulation Workflows
 - The Workflow Technology
- Communication with Human Users
- Human Communication Flows
- Human Communication Manager
- Using Human Communication Flows in Simulation Workflows
- Summary
Bone Growth Simulation

- Simulate bone growth depending on load, exercise, etc.
 - Understand diseases, e.g. fractures
- Based on the Finite Element Method (FEM)
- Typically manual steps
- Use workflows for automation
Multi-Scale Human Skeleton Simulation

- Choreography of simulations of skeleton, bone, tissue, and cell scale

Service Oriented Approach for Integration

- **Services:**
 - Are units of functionality
 - Described using a unified IDL
 - Independent of implementation technology
 - Self-contained stable service interfaces
 - Virtualization of components
 - Always up and running

- **SBAs** comprise services
- And follow the principles of the Service Oriented Architecture (SOA) style
- The SOA roles and operations:
 - SBAs comprise services
 - And follow the principles of the Service Oriented Architecture (SOA) style
 - The SOA roles and operations:
 - **Technology for implementing SBAs is workflows**
WfMS for Scientific Simulations

Scientific Workflow Modeling Environment

Scientific Workflow Execution Environment

Human Interaction Activity Execution

Task List

Human Task Manager

Applications

Simulation Data

Service Bus (Middleware)

Services

- Chemshell Service
- Dune Service
- Gnuplot Service
- Opal Service
- Pandas Service

Chemical Services

Simulation Data Services

Chemical Applications

Scientific Applications

Scientific Workflow Applications

Simulation Data Applications

Human Interaction Applications

Activity Execution Applications
The Problem: Automation vs. Human Users

- **Use of IT for automation:**
 - Workflows: Flexible composition of componentized functions
 - Scientific workflows: Composing scientific computation functions
 - Service-oriented computing and virtualization

- **Not all tasks can be automated**
 - Notifications to scientists in exceptional situations
 - Decisions on how to react to certain circumstances
 - Parameters that need to be provided by a domain expert
 - Approvals to be made by an executive
 - …

- **Challenges** of communication with humans
 - Human users have multiple communication devices
 - Communication devices offer different channels
 - Digital presence changes often
 - Responses from human users are not always valid
Human Integration Scenarios

- **Heavyweight**
 - Tight integration of the workflow and human task management
 - Collaborative problem-solving through task forwarding
 - Repair of workflows in case of failure in model-as-you-go fashion

- **Lightweight**
 - Pluggable integration of the workflow (engine), (the HCM,) and communication services
 - Human user registers communication devices and sets communication preferences
 - Advanced configurations for communication through presence models and probabilistic information

Available in Related Work

How???
Classification of Human Communication Types

- Different basic classes of communication with humans
 - Notification
 - Response required
 - Response optional

- Notification includes
 - status reports, fault reports, processing completeness updates, information hyperlinks, ...

- Response includes
 - Decisions such as approval, multiple choice, parameter selection, data checking, fault handling directive selection
 - Provisioning of parameters such as simple or complex values, parameter ranges, data correction, data selection
 - Control commands such as pause, resume, abort, retry, iterate, skip, jump, modify variable
Human Communication Flows

- The logic of interaction with a human
- Captured as a pattern and a workflow

Notification

Request and Required Response
Integration Architecture

- **Human Interaction Activity**
 - A complex process structure that is pre-modeled as process fragment, configurable to enable interaction with a human user
Human Interaction Activity Execution

- The information required for the interaction is sent to the human communication manager
Integration Architecture

- Human Communication Manager (HCM)
 - It manages all human tasks and
 - Enacts communication flows to route the task to users
 - Communication flows exploit presence information
Integration Architecture

- **Integrated Task List**
 - A list of human-related tasks that guide the human user through tasks to be performed
 - E.g. generated Web-forms for specifying complex parameters
Integration Architecture

- Communication services
 - Services enable communication between an application and human users’ devices and channels
Three major message types

- Communication request message
- Communication message
- Channel-specific message
Messages in the Communication Architecture

- Communication request message
 - Contains communication parameters interpreted by the HCM
 - Parameters indicate the type of communication, details on user and communication channel selection, the message, and requirements on the human user’s response
Messages in the Communication Architecture

- **Communication Message**
 - Contains communication parameters interpreted by the service
 - Parameters indicate the message subject, body, the recipient’s address, attachments, importance level, and classification
Messages in the Communication Architecture

- Service-specific Message, e.g. E-Mail Message
 - Represents the actual message sent to the human user
 - Rendering of properties of the communication message to the service-specific format depends on the used channel
Human Communication Flows in Scientific Workflows

- Model the logic of interaction in the workflow models
- Use the concept of workflow fragments for reuse
 - Store Fragments in a Fragment Library
 - Retrieve them during modeling
 - Insert them in the process logic
- Asynchronous communication possible
Prototype: SW4H

- SW4H = Scientific Workflows for Humans
 - SimTech Workflow Engine
 - HCM: message broker Apache ActiveMQ, routing engine Apache Camel, Spring Framework (transactionality, security)
 - Human Task Manager: Project Bangkok
 - 2 communication services: for e-mail (SMTP) and GoogleTalk (XMPP).
 - Communication Service Template
SW4H: Modeling and Frontend

- Integrated in Eclipse
- Stand-alone in a Web browser
Summary

- Using workflows for Simulations modeling and execution

- Interaction of human participants with the simulation workflows:
 - Standards used. No change in the workflow language
 - Allow for communication via different channels
 - Service-based integration of different types of communication services – Web Service focus
 - Asynchronous communication enabled
 - Can be used for other types of applications as communication initiator

- Future work:
 - Other communication services (ftp, twitter, skype)
 - Use workflows to execute the Human Communication Flows
 - Possible use in human-supported computing and integration of social media and BPM systems